Layer 3 Mobility Support in IP-Networks

C. Blondia

Department of Mathematics and Computer Science
University of Antwerp - Belgium
chris.blondia@ua.ac.be

Joint work with O. Casals, L. Cerda, (UPC, Barcelona, Spain) N. Van den Wijngaert, P. De Cleyn and G. Willems (UA)

NeXtworking'03 June 23-25,2003, Chania, Crete, Greece

Chris Blondia

1

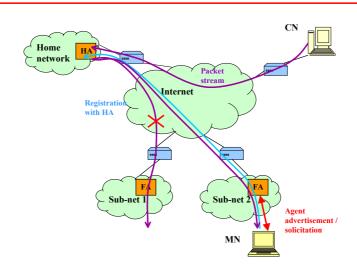
The First COST-IST(EU)-NSF(USA) Workshop on EXCHANGES & TRENDS IN NETWORKING

Outline

- Mobile IP: operation and shortcomings
- L3 Mobility solutions
- L3 Mobility solutions using L2 Triggers
- Mobility Management: Performance Issues
- L3 Mobility Management: Research Issues
- Related Papers

Mobile IP

- Mobile IP (MIP) provides a means to roam among networks without changing IP addresses
- 2 addresses are associated with a Mobile Node (MN) at all times (when away from the home network):
 - Home Address: address of the MN on its home network
 - Care-of Address: temporary address on a foreign network
- New routing/signaling entities
 - Home Agent: on the home network, provides central mapping of home address to care-of address; tunnels traffic to care-of address
 - Foreign Agent: tunneling endpoint (when using foreign agent care-of addresses)


NeXtworking'03 June 23-25,2003, Chania, Crete, Greece

Chris Blondia

3

The First COST-IST(EU)-NSF(USA) Workshop on EXCHANGES & TRENDS IN NETWORKING

Mobile IP: Operation

NeXtworking'03 June 23-25,2003, Chania, Crete, Greece

Chris Blondia

4

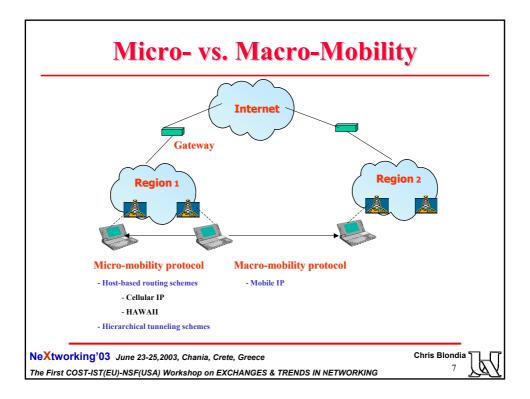
Shortcomings of plain MIP

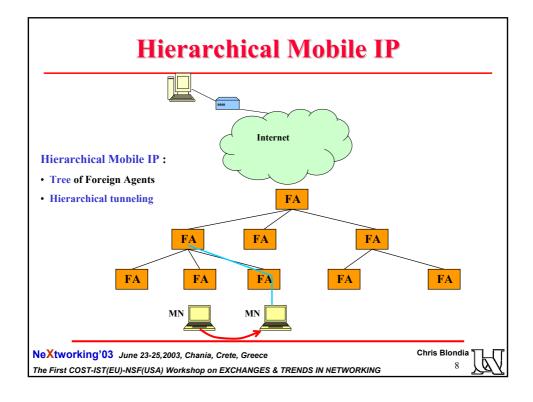
- Plain Mobile IP has 2 sources for delay/packet loss:
 - MN communicates with a directly connected FA
 - · Registration can only start after L2 handoff to new FA has completed
 - Registration latency
 - Registration process takes time to complete during which MN is unable to receive packets
- Performance consequences:
 - Packet loss at oFA
 - After L2 Line Down, MN is not reachable anymore via oFA

NeXtworking'03 June 23-25,2003, Chania, Crete, Greece

Chris Blondia

5

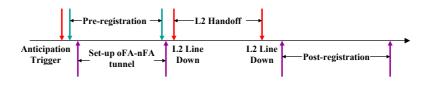

.011


The First COST-IST(EU)-NSF(USA) Workshop on EXCHANGES & TRENDS IN NETWORKING

L3 Mobility Solutions

- Keep time to perform L3 Handoff small
 - Micro-mobility vs. macro-mobility
 - · Local movements are dealt with locally
 - Example: Hierarchical Mobile IP
 - Registration can only start after L2 handoff to nFA has completed
- Avoid losing packets by bicasting
 - Send temporarily packets to both oFA and nFA
 - Example: Cellular IP (soft handoff)
- Avoid losing packets in oFA by Buffering and Packet Forwarding
 - After L2 Line Down: buffer packets in oFA
 - After L2 Line Up: forward packets to nFA
 - Example: **HAWAII MSF** scheme
- Avoid losing packets in nFA by Buffering
 - When packets are forwarded from oFA to nFA before registration completed
 - Example: Optimized Smooth Handoff

ndia 6



L3 Mobility using L2 Triggers

Pure L3 mobility solutions

L3 mobility using L2 Triggers: Pre- and Post-Registration

NeXtworking'03 June 23-25,2003, Chania, Crete, Greece

Chris Blondia

9

The First COST-IST(EU)-NSF(USA) Workshop on EXCHANGES & TRENDS IN NETWORKING

Pre- and Post-Registration: conditions

- Foreign Agents need to exchange and cache router advertisements
- Pre-Registration: Timing of triggers
 - Registration has to be finished before oFA L2 Line Down (possible packet loss in oFA)
 - If Registration is finished before nFA L2 Line Up, then packets need to be buffered in nFA
- Post-Registration: Timing Triggers
 - The Bi-directional Edge Tunnel (BET) between oFA and nFA has to be established before oFA L2 Line Down occurs
 - The packets that use the BET after the oFA L2 LD that arrive at the nFA before the nFA L2 Line Up, need to be buffered at the nFA

Mobility Mgt: Performance Issues

Performance measures

- Packet loss in oFA and nFA and/or buffer dimensioning
- Delay distribution of packets involved in handoff
- Throughput of TCP

Performance models

- Analytical model
 - M/M/1 model with CBR traffic
- ns-2 simulation
 - Used to produce handoff traces for mobility mechanisms over 802.11b, detailed simulation and TCP performance
- OPNET simulation
 - Used for detailed simulation, TCP performance, scalability studies.

NeXtworking'03 June 23-25,2003, Chania, Crete, Greece

NeXtworking'03 June 23-25,2003, Chania, Crete, Greece

The First COST-IST(EU)-NSF(USA) Workshop on EXCHANGES & TRENDS IN NETWORKING

Chris Blondia

Chris Blondia

The First COST-IST(EU)-NSF(USA) Workshop on EXCHANGES & TRENDS IN NETWORKING

Example: Timing L2 Triggers dropped packets due to Required buffer capacity as a expiration of the playout function of the timing of the time for variable D_LU L2 triggers

Future Work / Research Issues

- Implementation over IEEE 802.11
 - IEEE802.11 has no specific triggers
 - Use IEEE802.11 beacon as Anticipation Trigger
 - · Re-association messages used as Line Up Trigger
 - L2 handoff may take several 100 ms
 - · Scanning of various channels to find the best Access Point
 - · Use buffering to avoid packet loss
- Improve L3 handoff performance using location information
 - · Access points along a highway
 - Mobile station's route determined (GPS)

NeXtworking'03 June 23-25,2003, Chania, Crete, Greece

Chris Blondia

The First COST-IST(EU)-NSF(USA) Workshop on EXCHANGES & TRENDS IN NETWORKING

Related Papers

- Performance Analysis of IP Micro-Mobility Handoff Protocols, PfHSN'2002, **Lecture Notes in Computer Science 2334**
- Performance Analysis of a Forwarding Scheme for Handoff in HAWAII, Networking 2002, LCNS 2345
- Performance Analysis of Optimized Smooth Handoff in Mobile IP, MSWiM 2002
- Performance Evaluation of the Post-Registration Method, a Low Latency Handoff in MIPv4, ICC 2003
- Performance Comparison of Low Latency Mobile IP Schemes, WiOpt '03
- Low Latency Handoff Mechanisms and their Implementation in an IEEE802.11 Network, ITC 18, 2003
- Integration of IP Mobility in OPNET: Modelling and simulation, proceedings of OPNETWORK2002.

http://win-www.uia.ac.be/u/pats/publications.html